빅데이터 분석의 흐름빅데이터 분석은 방대한 양의 데이터를 처리하고 이를 기반으로 유용한 인사이트를 도출하는 과정을 의미합니다. 이러한 빅데이터 분석의 흐름은 데이터를 수집하고 처리한 뒤 분석하여 의사결정에 활용하는 일련의 단계로 나눌 수 있습니다. 이번 포스팅에서는 빅데이터 분석의 주요 단계와 각 과정에서의 핵심 요소들을 살펴보겠습니다.업무 이해먼저 업무목적에 대해 파악을 해야합니다. 데이터를 이용해 얻고자 하는 게 무엇인지 명확하게 결정할수록 분석 작업에서 효율적으로 일을 진척시킬 수 있습니다.핵심포인트 : 업무이해, 업무목적파악, 상황파악, 데이터마이닝 목표 설정, 프로젝트 계획수립데이터 수집데이터 수집은 다양한 소스에서 데이터를 모으는 과정입니다. 여기에는 웹 로그, 소셜 미디어, 센서 데이터, 트..
데이터프레임 값 변경하기판다스(Pandas) 데이터프레임에서 특정 값을 원하는 값으로 변경하는 방법은 여러 가지가 있습니다. 이전에 replace로 변경하기에 대한 내용을 포스팅했었는데 비슷한 내용이지만 이번 포스팅에서는 replace 없이 다른 메쏘드를 통해 사용하는 방법을 소개합니다. 1. 특정 조건에 맞는 값 변경하기import pandas as pd# 예시 데이터프레임 생성data = {'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50]}df = pd.DataFrame(data)# 조건을 만족하는 값을 원하는 값으로 변경df.loc[df['A'] == 3, 'B'] = 100df.iloc[2, 0] = 7df loc를 이용해 'A' 열에서 값이 3..
데이터 변환이란?빅데이터 분석과정 중에서 데이터 변환은 정제된 데이터를 분석 목적에 맞게 만드는 과정을 말합니다. 그래서 데이터 변환 단계에서는 변수를 생성하거나 데이터 선택해 필요없는 데이터는 정리하면서 데이터 차원을 축소하는 작업을 하게 됩니다.R을 통해서 데이터 변환 작업을 어떻게 하는지 알아보도록 하겠습니다.데이터 타입변경데이터의 타입 정리가 되어있지 않으면 머신러닝이나 딥러닝을 할때 방해가 될 수 있습니다. 반드시 타입변경을 해주어야 합니다. 데이터 타입 변경에 대한 내용은 아래 포스팅을 참고하시기 바랍니다. [R] 데이터 타입 변경하기R에서 데이터 타입 변경하기R에서 데이터 타입을 변경하는 방법입니다. 데이터 분석 과정에서 데이터 타입을 올바르게 지정하는 것은 매우 중요합니다. 데이터 타입..
데이터프레임 컬럼값 타입 확인하고 바꾸기데이터를 외부에서 받아오면 불가피하게 타입이 고르지 못하고 중구난방으로 다운로드됩니다. 이 상태로 데이터프레임으로 전체 행, 열 계산을 하려고 할 때 애를 먹을 수 있습니다. 이번 포스팅은 컬럼값 타입을 확인하고 혹시 다른 타입이 있다면 어떻게 바꿔야 하는지에 대해 소개합니다.컬럼값 타입을 확인하려면 isintance 함수를 알아야 합니다.파이썬 타입 확인 함수 isintance 파이썬에서 데이터타입을 boolean으로 판단하려면 isinstance()함수 사용합니다. isintance는 파이썬의 내장함수라서 따로 설치할 라이브러리가 없습니다. 파이썬이 설치되어 있다면 바로 쓸 수 있습니다. isinstance()는 object(변수나 객체), classinfo(타..
범주형 데이터 인코딩하기 머신러닝 모델은 글자를 인식하지 못합니다. 이 사실만으로도 인코딩을 반드시 해야한다는 걸 이해하실 수 있을겁니다. 컴퓨터는 사람처럼 소통하는 게 아니기 때문에 이것이 범주형 데이터라는 것을 알려주어야 합니다. 그런 의미에서 판다스에서 타입이 object로 분류되는 데이터는 인코딩을 해주어야 합니다. 인코딩 방법 데이터 인코딩하는 방법은 굉장히 많습니다. 그 중에서 주요한 방법인 레이블 인코딩, 원핫인코딩, 더미 변수, 빈도 인코딩, 순서 인코딩에 대해 간단히 정리합니다. 레이블 인코딩 (Label Encoding) 개념: 각 범주에 고유한 정수를 할당하는 방식입니다. 카테고리가 확실할 때 사용합니다. 문자를 정수로 반환하는 역할만 합니다. 원 데이터의 손실이 없습니다. 예시: f..
숫자형 데이터 스케일링하기 머신러닝이나 딥러닝으로 빅데이터 분석을 하기전에 필수로 해야하는 것이 데이터값 맞추는 작업입니다. 숫자형 데이터인 경우 숫자가 중구난방이 되면 안되기 모델 정확도가 많이 떨어지기 때문에 컬러마다 범위가 같게 숫자로 맞춰주어야 합니다. 모두 비율로서 맞춰서 모델 예측력을 높입니다. 스케일링 방법 스케일링 방법에는 Min-Max Scaling, Standard Scaling, Robust Scaling이 주요한 방법입니다. Min-Max Scaling 개념: 데이터의 범위를 최솟값을 0, 최댓값을 1로 변환하여 모든 데이터값이 0~1사이의 값으로 바꿔줍니다. 수식: $$X_{\text{scaled}} = \frac{X - X_{\text{min}}}{X_{\text{max}} - ..
xlsx -> csv의 필요성 파이썬에서 xlsx로 작업을 하면 제약사항이 많아집니다. 가장 큰 제약은 느린 불러오기입니다. xlsx를 불러오는 것부터가 곤욕입니다. 그 이후에 판다스에서의 작업은 사실 xlsx 파일과는 무관하기 때문에 상관은 없습니다. 하지만, 계속해서 xlsx를 불러와야 하는 상황이라면 얘기가 달라집니다. 훨씬 빠른 불러오기가 가능한 csv로 변환합니다. 변환을 office를 이용하면 손쉬운데 실제로 해보면 오류도 많고 드럽게 안됩니다. 또한 office는 csv를 했다해도 office에서 원하는 방향으로 만들어지기 때문에 제약이 들어갑니다. 그래서 파이썬 내에서 xlsx를 가져와 csv로 바꿔보겠습니다. xlsx 파일 csv로 변환하기 프로세스는 간단합니다. 판다스로 xlsx 불러오..
리스트에서 특정 문자 있는 경우 제거하는 방법입니다. 조건 걸어서 하나씩 지우면 되긴 하는데 이게 될 때가 있고 안 될 때가 있더군요. 그래서 다른 방법을 추천하는 글입니다. 보통 for문으로 제거하려고 할텐데 if 문 써서 리스트 원소의 문자열에 해당 문자가 있으면 remove를 통해 지우려고 할 겁니다. 저도 그렇게 했고요. 그래서 아래와 같이 for문으로 합니다. 그럼 그냥 안된다고 봐야 합니다. search = 'temp' for word in file_list: if search in word: print('원소 제거: ' + word) file_list.remove(word) print(file_list) 전혀 지워지지 않습니다. 그 이유는 인덱스 문제로 remove의 방식 때문인데 인덱스가 ..
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.