범주형 데이터 인코딩하기 머신러닝 모델은 글자를 인식하지 못합니다. 이 사실만으로도 인코딩을 반드시 해야한다는 걸 이해하실 수 있을겁니다. 컴퓨터는 사람처럼 소통하는 게 아니기 때문에 이것이 범주형 데이터라는 것을 알려주어야 합니다. 그런 의미에서 판다스에서 타입이 object로 분류되는 데이터는 인코딩을 해주어야 합니다. 인코딩 방법 데이터 인코딩하는 방법은 굉장히 많습니다. 그 중에서 주요한 방법인 레이블 인코딩, 원핫인코딩, 더미 변수, 빈도 인코딩, 순서 인코딩에 대해 간단히 정리합니다. 레이블 인코딩 (Label Encoding) 개념: 각 범주에 고유한 정수를 할당하는 방식입니다. 카테고리가 확실할 때 사용합니다. 문자를 정수로 반환하는 역할만 합니다. 원 데이터의 손실이 없습니다. 예시: f..