dplyr 패키지를 이용한 데이터 조작안녕하세요~ 이번 포스팅에서는 R의 패키지인 dplyr에 대해 이야기해보려고 합니다. dplyr은 데이터를 효율적으로 다루기 위해 만들어진 패키지로, 간결하고 쉬운 코드를 작성하는데 유용합니다. 특히, 파이프(%>%)를 이용한 코드가 가능하기 때문에 한번에 데이터 조작을 할 수 있습니다. 그럼 주요 기능들을 살펴보겠습니다.dplyr 패키지 소개dplyr은 Hadley Wickham이 개발한 패키지로, 데이터 프레임을 조작하는데 최적화되어 있습니다. 패키지 없이 R로 다 해결하려면 코드양이 많아지지만 dplyr 를 사용하면 코드량을 획기적으로 줄일 수 있습니다.주요기능은 다음과 같습니다.filter() : 행 필터링select() : 열 선택mutate() : 새로운 ..
데이터 변환이란?빅데이터 분석과정 중에서 데이터 변환은 정제된 데이터를 분석 목적에 맞게 만드는 과정을 말합니다. 그래서 데이터 변환 단계에서는 변수를 생성하거나 데이터 선택해 필요없는 데이터는 정리하면서 데이터 차원을 축소하는 작업을 하게 됩니다.R을 통해서 데이터 변환 작업을 어떻게 하는지 알아보도록 하겠습니다.데이터 타입변경데이터의 타입 정리가 되어있지 않으면 머신러닝이나 딥러닝을 할때 방해가 될 수 있습니다. 반드시 타입변경을 해주어야 합니다. 데이터 타입 변경에 대한 내용은 아래 포스팅을 참고하시기 바랍니다. [R] 데이터 타입 변경하기R에서 데이터 타입 변경하기R에서 데이터 타입을 변경하는 방법입니다. 데이터 분석 과정에서 데이터 타입을 올바르게 지정하는 것은 매우 중요합니다. 데이터 타입..
R로 ROC 곡선 분석하기R에서도 머신러닝이 되는만큼 모델 평가 중 하나인 ROC 곡선 분석을 할 수 있습니다. pROC 패키지로 가능한데요. 다만, pROC패키지는 2진 분류만 가능합니다.예제로 간단하게 iris 데이터를 이진분류를 한 후 ROC 곡선으로 평가해보겠습니다.iris를 이용한 ROC 곡선 평가먼저, iris는 세가지 클래스(setosa,versicolor,virginica)를 포함하고 있으므로, 두개의 클래스로 변환후 이진 분류를 수행합니다. roc는 0,1로 된 범주형 변수로 되어야 하므로 맞게 변환합니다. # 필요한 패키지 로드 library(pROC) # versicolor와 virginica만 선택 iris_binary versicolor,virginica 으로 나누..