[Pandas] DataFrame 인덱스 설정, 리셋

반응형
반응형

DataFrame 에서는 원하는 인덱스를 설정하거나 리셋시킬 수 있습니다.

 

총 설정방법은 2가지와 리셋 1가지를 정리할 예정인데요. 다음과 같습니다.

1. 직접 배정 해주는 방법

2. set_index를 이용해 원래 있는 열을 인덱스로 배정하는 방법

3. reset_index를 이용해 인덱스 리셋

 

 

1. 직접 배정해 주는 방법

직접 배정해주려면 data와 갯수가 맞아야 합니다. 다음과 같은 메소드를 씁니다.

 

DataFrame.index= list

DataFrame.columns = list

 

list로 설정된 값이 인덱스로 들어가게 됩니다.

import numpy as np
import pandas as pd
ddf = pd.Dataframe(np.arange(0,16).reshape(4,4))
ddf

ddf.index = ['r0','r1','r2','r3']
ddf.columns = ['c0','c1','c2','c3']
ddf

지금 쓰고 있는 데이터의 행렬이 (4,4)이기 때문에 리스트 또한 4개로 맞춰서 할 수 있습니다.

 

 

2. set_index

set_index로 원래 있던 columns을 index로 불러들이는 방법입니다.

 

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

 

keys 에는 인덱스로 사용하려는 열의 레이블을 입력받습니다.

멀티 인덱스를 하려면 리스트형태로 값을 넣어주시면 됩니다.

drop은 인덱스로 쓸 열을 데이터 내에서 지울것인지 여부를 결정합니다.

append는 기존의 쓰던 인덱스를 삭제할지 여부를 결정합니다.

inplace는 원본 객체를 변경할지 여부를 결정합니다.

verify_integrity는 인덱스 중복여부를 체크하는 것인데 True로 하면 체크하는 시간 때문에 성능이 떨어집니다.

 

ddf.set_index('c0',drop=False)

ddf.set_index('c3',append=True)

ddf.set_index('c3',inplace=True)
ddf

ddf.set_index(['c2','c3'],inplace=True)
ddf

멀티인덱스는 리스트 형식으로 넣으면 됩니다.

 

 

3. reset_index

설정했던 인덱스를 초기화 해보겠습니다.

 

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')

 

drop과 inplace만 주로 쓰입니다.

level 은 인덱스에서 주어진 단계를 제거합니다. 기본값은 모든 단계를 제거합니다.

col_level은 멀티인덱스일 경우 어떤 것으로 삽입할것인지 설정합니다. 기본값이 0이어서 첫번째 것이 삽입됩니다.

col_fill은 멀티인덱스일 경우 어떻게 다른 단계의 이름을 붙일 것인지 설정합니다. 기본값은 '' 라서 안 붙여집니다. 

'None'으로 하면 인덱스 이름이 반복됩니다.

ddf

ddf.reset_index()

 

ddf.reset_index(drop=True)

 

Designed by JB FACTORY